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1. INTRODUCTION

There are three basic versions of the finite element method, called the h, p

and h-p versions. They are essentially characterized by the way in which the finite

element meshes and polynomial degree of elements are chosen. They differ in computer

implementation (program architecture) and mathematical analysis. This paper is
concerned mainly with the question of how the meshes and polynomial degree of the

elements affect the accuracy of finite element solutions. Our approach is to fix
certain parameters or their relation and increase the number of degrees of freedom so

that the finite element solutions converge to the exact solution. Such a systematic
increase of the number of degrees of freedom is called extension because it can be
interpreted as a systematic extension of finite element spaces.

When emphasis is on analysis of accuracy and not aspects of implementation, then
we speak about the h, p and h-p extensions rather than versions. Understanding
the various extension processes and their numerical performance is essential for
resolving certain basic questions of implementation.

The h-extension is the most commonly used approach to error reduction. The
polynomial degree (p) of the elements is fixed and the errors of approximation are
reduced through mesh refinement. The size of the elements is usually denoted by
h, hence the name: h-extension. Typically, the polynomial degree of elements is
low, usually p - I or p - 2.

In the p-extension the mesh is fixed and convergence is achieved by increasing

the polynomial degree of elements either uniformly or selectively.

The h-p extension combines the h- and p-versions, i.e., reduction of error is

achieved by mesh refinement and concurrent choices in the polynomial degree of

elements.

The parameters that characterize extension processes can be chosen either a

'Partially supported by ONR Contract No. 0014-77-C-9623.

2 Partially supported by NSF Grant DMS-8315216.

3Partially supported by ONR Contract No. N0014-81-K0625.
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priori, on the basis of certain characteristics of the exact solution, known a
priori, or a posteriori, through utilization of some feedback procedure in which case
the parameters of the extension process depend on previously computed data.

The analysis and especially optimization of extension processes (selection of
optimal meshes, polynomial degree distributions, etc.) presented herein indicate the
potential of alternative approaches and provide a basis for decisions concerning
implementation.

In order to keep the essential points in focus, we consider only two simple
model problems based on the displacement formulation and two measures of error: The
error measured in energy norm and the error of stress components computed at specific
points.

Specifically, we denote the exact and finite element solutions respectively by
u0  and 5. The error is then e = u0 - ri. The energy norm of e is denoted by
e elE and is defined as the square root of the energy of thd error:

leE = (W(e))'.

The relative error in energy norm is denoted by lelER and is defined as:

,." lel EleE -E

ER luo E

The error in stress components at some poin x0  is defined as

0X':-e e(x O) = 10 0j(Xo) - -0 (Xo

.'0 an0dj

*where go (x0 ) and aij(xo) respectively denote the exact and computed componentsof the stress tensor at point xO . The relative error in stresses is defined by:

R ( leij(xo)I
e j 0 ( )Iij 0 I 0o

The one dimensional problem can be analyzed theoretically and experimentally in great
detail. One dimensional problems can also serve as models for higher dimensional
problems which are vastly more complicated and less well understood. Presentation of
details and derivation of formulas quoted herein is beyond the scope of this paper.
For the proofs of theorems in one dimension, we refer to [1], [2]. For further
details and application to two dimensions, we refer to [31, [4], [51, [6), 181.

2. MODEL PROBLEMS

2.1. Model Problems

We consider the following simple model problems:

" --.- , 4,n , .. -- *I **' %* 4 nw 41 u4 ' - - ld- - n
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-u"(x) f(x), x f I - (0,1) (2.1)

u(O) u(M) - 0 (2.2)

and exact solutions of the form:

a
Uo(X) ,. (x+) _ -_x[(l+C)l _ a] (2.3)

with a > 1/2 and > 0. The solutions minimize the potential energy defined as:

w(u) = W(u) - 2 f fu dx
0

"" 1

where W(u) f J (u') 2 dx.
0

The finite element solutions are characterized by the mesh and p-
distributions. Specifically we denote., the mesh by the partition:

A =: 0 = xA < x < . < XMA1
0 1 MWA

where x0'XI".. xM(A) are the mesh (or nodal) points. The jth finite element is

denoted by: IJ+ I = (x, xj+l). The size of the jth element is defined by hj

= . - .. The size of the largest element is denoted h(A). The set of all

functions w, defined on I that satisfy the following conditions:

(a) W(w) < -,

(b) the boundary conditions (2.2),

A A
(c) on I w is a polynomial of degree p

p(A) AA A

is denoted by S (A) where .2(a) W (1P2' . . . ,p M(A)) is the vector of p-

-2 (A)
distribution. S (A) is called the finite element space. The number of degrees

of freedom is denoted by N(A):

p(A) M(A) A

N(A) dim S (a) - I p - I.

The finite element method consists of finding u E S which minimizes (u) over

P(A)
S (A). The extension processes are characterized by the selection of sequences
of A and' of A and .p(A).

I.

d! "" ""'%
"
, " ,\' ' ,' ' , ¢' .. "'' . ''' ,: ;' .%'
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2.2. The Two-Dimensional Model Problem

We shall consider the model problem of Fig. 2.1 assuming plane strain conditions
and using the elastic parameters E - 1, v - 0.3. The tractions on the boundary are
chosen so that the exact solution is known and the singularity at the crack tip is
characterized by the stress intensity factors K1 = KII W 1.

The solution of Model Problem 1 has certain similarities with the solution of
Model Problem 2 from the point of view of numerical performance when -0 and 0.5

' <a< I.

3. THE PERFORMANCE OF THE FINITE ELEMENT METHOD IN ONE
DIMENSION WITH RESPECT TO THE ENERGY NORM MEASURE

We now demonstrate how the performance of the various extension processes
depends on the mesh and the polynomial. degree of elements. The principal mathematical
tool is asymptotic analysis which provides information on how the error depends on
the mumber of degress of freedom when only one parameter is being varied, and on
certain essential characteristics of the exact solution provided that the number of
degrees of freedom is large. We shall consider Model Problem I and choose the
parameters and a so as to represent problems with solutions of various
smoothness ( = 0, c > 1/2) and & > 0.

3.1. H-Extensions Based on Uniform Mesh Refinement ( 0 = )

IIn this case M(A) - -h---, p is fixed. The number of elements fully charac-

terizes the mesh and the error in energy norm for 1 - 0 is estimated as follows:

Eel eR C(a) (3.1)
E MPP

where the symbol Z means "asymptotically equal", C(c) is a constant independent
of the mesh and the polynomial degree of elements:

-min(s- 1/2 ,p) (3.2)

p - 2a- 1 (3.3)

and the number of degrees of freed~m is given by:

N - Mp-1. (3.4)

Although (3.1) is an asymptotic estimate, it holds even for reasonably low values
of N. In order to demonstrate this, we have computed the value

D = eER M11pp. (3.5)

D is called the numerical value of C(a). The results for a 0.7 (and therefore

p 0.2, p - 0.4) are shown in Table 3.1. IeIER is shown as "percent relative
.0 error". It is seen that (3.1) holds well also when M(A) is small and the error is

.4,

4/
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large. In view of the fact that p is twice the value of U, for the same number
of degrees of freedom the higher order elements perform better.

3.2. H-Extensions Based on Nearly Optimal Mesh Refinement ( = 0)

We once again consider the case 0 - 0. In this case the optimal mesh (for
fixed p) is asymptotically:

" (3.6)

where:

p+ /2

S0  = * (3.7)

a -1/2

The estimate of error measured in energy norm is given by:

/ I-M- [(2a-1)0 -2p]

lelER g C(a) - 4(-)p  (2a-l)- 2p = N-p  (3.8a)
ERp

provided that

>8 = P . (3.8b)a-1/2

When 8 < i then the rate of convergence with respect to M decreases. The
reliability of estimate (3.8) for 8 = 0 is shown in Tables 3.2a and 3.2b.

With reference to Tables 3.2a, 3.2b, we note the following observations:

(a) The asymptotic estimate (3.8) is of good quality when M > 2p. For H <
2p the formula is pessimistic. The reason for this is that (3.8) is based on the
assumption that M + -. Therefore it cannot be expected to give close estimates for
low values of M. In the case M < 2p, analysis based on p-extension rather than
h-extension should be used.

Table 3.3 shows the error for optimal distribution of the nodal points for M =
2 and a = I.I. It is seen that for small values of p (p = 1,2) the
asymptotically optimal mesh performs very nearly as well as the optimal mesh.

(b) When a is small (strong stress singularity occurs) the optimal refinement
is so strong that roundoff limitations are encountered even when the computations are
performed in double precision. Table 3.4 shows the values of 0O, 8, the
coordinate of the first nodal point for the optimal mesh, xI (opt), and for the mesh

at which the rate of convergence begins to decrease, x1 (min), for a = 0.7, M =32.

(c) Overrefinement is more advantageous than underrefinement. If a is not
known precisely, then the refinement should be designed for lower bound estimates of
a. Overrefinement increases the value of Z in (3.8a) but does not alter the rate
of convergence (N-P). The penalty, in terms of increased values of C and
increased values of N for achieving comparable levels of accuracy are shown in

N .
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Table 3.5. The mesh refinement is optimal for a = 0.7, the penalty values are
shown for a - 1.1, 1.6, 2.1.

It is seen that the penalty for overrefinement is not small. Underrefinement

also reduces the rate of convergence. Therefore the penalty for underrefinement is
still larger. This shows the importance of correct selection of mesh refinement.

3.3. P-Extensions Based on Uniform Meshes (E - 0)

In this case M(A) << p and the estimate (3.1) holds. The results of
computational experiments are shown in Table 3.6.

On comparing the results on the basis of the number of degrees of freedom (N =

Mp-1), it is seen that the best choice is H - 1. Comparing Tables 3.6 and 3.2a it
is evident that h-extensions based on optimal meshes yield better results than p-
extensions based on uniform meshes. The performance of p-extensions cannot be
improved substantially through optimizing the p-distribution. Table 3.7 shows the
effect of optimal p-distributions for H - 2 and a = 0.7, 1.1.

3.4. H-p Extensions ( 0 = )

In this case the meshes and p distributions are optimized concurrently. The
assymptotically optimal mesh is characterized by the following geometric progression
of nodal points:

x = ()0 f 1,2,...,(A) (3.9)
:10

where:

KO _ 1)2 .  (3.10)

The polynomial degrees of elements are assigned as follows:

p [s(o)j] (3.11)

where

s(a) = 2(a -1/2) (3.12)

and [NJ means: the integral part.

The error estimate is:

el ER - C(+)[( + 1)2

-YO( - 1/2 AN

C(a)e YO 1.574. (3.13)

*,

0.
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The numerical performance of h-p extensions is illustrated in Table 3.8. On
comparing the results with those in Table 3.2a, it is seen that the rate of
convergence of the h-p extension is much greater than the rate of convergence of
the h-extension based on asymptotically optimal meshes.

3.5. The h-p Extenslop with Uniform p and Optimal Mesh (F = 0)

The mesh is the same as in Section 3.4, i.e., with the nodal points defined by
(3.9), (3.10) nd we assume that the p-distribution is uniform. In this case the
estimate for 2 (0(1 is:

-20 12)N
le ~ ) I ei'2 (3.14)

lelER - C(a) 2a-1
P

where, as in (3.13), y 1.574 and:

p - [s(a)]M(A) (3.15)

s(a) - 2(a- 1/2). (3.16)

The numerical performance of the h-p extension with uniform p is shown in Table
3.9. On comparing Table 3.9 with Table 3.8, it is seen that the performance of the
h-p extension with uniform p is not substantially different from that of the h-p
extension with optimal p-distribution. The performance can be analyzed also for p-
distributions other than that given in (3.15). When p increases more rapidly than
(3.15), then the rate of convergence diminishes until it reaches the algebraic rate
characteristic of p-extensions. When p increases less than (3.15), then the rate
of convergence diminishes because h(A) does not change.

3.6. H-Extensions that Utilize Feedback ( = 0)

In Section 3.2 it was pointed out that the quality of performance of h-
extensions depends on the mesh design. Proper mesh design depends on the exact
solution which generally is not known. It is possible to devise feedback procedures
however, that construct meshes whi-ch asymptotically perform as well as the optimal
meshes. Such feedback procedures are called adaptive [9), [10), [11], [12].

Tables 3.10a, 3.10b show the results of numerical experiments. The numerical
value D is based on a formula for optimal meshes that utilize only nodal point
which can be constructed by successive bisection of elements, not all meshes as
considered before, because the feedback procedure uses only such meshes.

3.7. H-p Extensions that Utilize Feedback

It is possible to devise feedback procedures that perform nearly as well as the
optimal h-p extension. Results obtained with such a procedure are shown in Table
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3.11 (a 0.7). The meshes were generated by bisection, therefore, D is based on

an estimate developed for such meshes only.

3.8. p-Extension Based on Properly Designed Meshes and Feedback (F 0)

In this case the mesh is 6trongly graded toward singular points, on the basis of

(3.9), with K0 = (12 - 1)2 - 0.1715 or slightly smaller, say K0.= 0.15 and M(A)
is fixed. The polynomial degree of elements is uniformly increased. The error
decrease first exponentially and if p is too large, then algebraically, as
explained in Sec-tion 3.5. Feedback is utilized to ensure (through proper selection
of M(A)) that the desired accuracy is reached in the range where the convergence is
exponential.

3.9. Smooth Solutions Q > 0)

We have considered various extengion processes when the solution has singular
character. When the solution is smooth, then p-extensions perform especially well
for small M. The error estimates for ) 0 in (2.3) are as follows:

(a) for =0

eC() (3.17)ER 2a-lP

(b) for > 0

el = C(a) 1q p (3.18)

p
where:

q = 1 1 E 1 r& (3.19)

In Table 2.11 results are presented for a = 0.7 and = 0, / 0.01 and =

improves with increasing smoothness of the solution.

4. ACCURACY OF STRESS APPROXIMATIONS IN ONE DIMENSION

In one dimension the stress is simply u'(x 0 ). In contrast to the two
dimensional case, the behavior of the finite element solution in our example is
entirely local, therefore we need to consider only the case with one element. The
results of numerical experiments for a = 0.7 and various C values are shown in
Table 4.1. It is seen that the element that contains the singularity (t =0) yields
very poor stress approximations.

When quantities other than the energy are of interest, for example stresses,
then the mesh and p-distribution should be optimal or nearly optimal with respect to

p..
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the purpose of computation. Optimal meshes and p-distributions depend not only on
the purpose of computation but also on the method used for computing the quantities

of interest. See, for example, [I0],[131.

5. PERFORMANCE OF THE FINITE ELEMENT METHOD IN IWO
DIMENSIOIS. WITH RESPECT TO THE ENERGY NORM

The theory of two dimensional problems presents more difficulties and is
therefore less well understood than the theory of one dimensional problems.
Nevertheless there are important similarities which make it possible to gain valuable
insight from the analysis of one dimensional problems. There are important
differences also, for example, error in stresses in two dimensions behave quite
differently from the errors in stresses in one dimension. Stress computations are
discussed in the next section. Here we discuss the properties of various versions
and present numerical results for our two dimensional modeV problem. The results
were obtained by means of the h-version program FEARS with feedback capabilities
[141 and the p-version program FIESTA-2D [151. FEARS has elements of polynomial
degree 1 only, the polynomial degree of elements in FIESTA-2D range from 1 to 8.

5.1. H-Extension Based on Uniform Meshes

The estimate for our model problem, defined in Section 2.2, is:

le ER m C(p)N- '/ . (5.1)

Detailed theoretical analysis, comparable to the one dimensional case, is not
available. The results of computations are shown in Table 5.1, where D represents

the numerical value of C(p). The results indicate that the asymptotic estimate
(5.1) is of good quality.

5.2. H-Extension with Feedback

As in the one dimensional case, the sequence of optimally designed meshes leads

to a rate of convergence independent of the singularity. The estimate for optimally
designed meshes Is:

EelER C(p)N - p /  (5.2)

Note that the exponent of N is p/2, not p as in the one dimensional case.

H-extension with properly utilized feedback (adaptive approach) should lead to
the same asymptotic rate of convergence as the optimally designed sequence of
meshes. Table 5.2 shows the results obtained with FEARS.

5.3. P-Extension on Uniform Mesh

In this case the estimate is (31 [41:

C'%
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eIER - C()N/2+C (5.3)

where c > 0, arbitrary. It is not known whether the term c can be removed.

Table 5.3 shows the resul;s, obtained with FIESTA-2D using four square elements.

5.4 H-p Extension

The estimate for h-p extensions based optimal mesh and on either optimally or
uniformly distributed p is:

3

lelER 4 C e -' N  > O. (5.4)

In the two dimensional case the optimal value of y is not known nor is it known
3

whether the term IrN can be improved. The value of y depends on the distribution
of p.

5.5. p-Extension Based on Properly Designed Mesh and Feedback Information

As in the one dimensional case, the p-extension performs much the same way as
the h-p extension when p is not two large and the mesh is properly designed. For
large p the p-version performs as if the mesh were uniform. An example is
presented in Table 5.4. The fact that the rate of convergence slows for high p is
an indication that the mesh should be refined. Slowing of the rate of convergence
can be detected which is the feedback information needed for increasing the number of
finite elements.

5.6. Smooth Solutions

When the solution is smooth, the p-version is very effective and, as in the one
dimensional case, the convergence is exponential.

6. STRESS 6OMPUTATIONS IN TWO DIMENSIONS

Stress approximations behave quite differently in two dimensions than in one
dimension. In one dimension in our example the error depended only on the behavior

of the solution in the particular element in question, i.e., the error was completely
localized. In two dimensions, on the other hand, the error is comprised of two
parts: the local error and the error associated with all other elements. This
second part is called pollution error.

*The error in stresses depends to a large extent on how the stresses are
computed. Indirect techniques are available which substantially reduce both the
local and pollution error, as compared with the conventional (direct) methods of
stress computations [7], [101, (13).

. .. . -. . . . ~ Y . AV. ?- Lq.
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6.1. Performance of h-Extensions Based on Nearly Optimal Meshes

Let us examine the stresses at point xl - x2 - 0.25 in the model problem.
Solutions were obtained by means of the computer program FEARS. The point under
consideration is the vertex of four elements. Therefore, four different values can
be computed, using the derivatives of the four elements and the appropriate stress-
strain low. The relative errors, are shown in Table 6.1 for the three stress

* . components all, a22, 012 for the four adjacent elements. The error of the

• " average value (A) is also shown. It is seen that the error of the average value is

smaller than the error in most elements. This is a well known fact which is
generally utilized in stress computations.

" "The relative error in the same stress componets computed by means of an indirect
(postprocessing) technique [13] is shown in Tab. 6.2.

The improvement is very substantial. The postprocessing technique yields st 5ess
values which are not sensitive to the meshes and the error is of the magnitud IeIER.

6.2. Performance of the p-Version

When the solution is smooth, the p-version performs well. When the solution is
not smooth and the elements are large, then the pollution error is generally large.

..,Satisfactory theoretical analysis is not available. It is known, however, that the
pollution error can be reduced very substantially by surrounding points of stress
singularity with one or more layers of elements.

The relative errors at point x = 0.1, x2 = 0.2 (which is located at element

boundaries) are shown in Tables 6.3a and 6.3b. The results presented in Table 6.3a
are strongly affected by pollution because the vertex of the neighboring element was
on the singular point. The results presented in Table 6.3b are much less affected by

-. pollution because an extra layer of elements were added so that the neighboring

element no longer had a vertex on the singular point. The local error is, of course,
the same in both cases. Table 6.3a and 6.3b illustrate the importance of proper mesh
design when the stresses are computed from the finite element solution directly. The
postprocessing method removes sensitivity to mesh design.
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TABLE 3.1.- H-EXTENSION WITH UNIFORM MESH REFINEMENT, a - .7

p-I p 2 p = 3 p 4

lelERZ D lel ERZ D lelER% D lel ERZ D

2 87.31 1.00 66.57 1.01 56.70 1.01 50.58 1.01
4 76.11 1.00 57.96 1.01 49.37 1.01 44.03 1.01
8 66.26 1.00 50.44 1.01 42.98 1.01 38.33 1.01

16 57.70 1.00 43.91 1.01 37.40 1.01 33.36 1.01
32 50.23 1.00 38.24 1.01 32.57 1.00 29.05 1.01
64 43.72 1.00 33.29 1.01 28.35 1.00 25.29 1.01

128 38.08 1.00 28.98 1.00 24.68 1.01 19.01 1.01
256 33.13 1.01 25.22 1.01 21.48 1.00 19.16 1.01

%°n

TABLE 3.2a.- H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, a 0.7

p - 1 (B 7.50) p - 2 (8 - 12.50)

H
EelER D EelERZ D

2 80.71 .314 70.65 .133
4 51.59 .402 39.94 .300
8 29.14 .454 14.77 .445
16 15.46 .482 4.365 .526
32 7.966 .496 1.168 .562

TABLE 3.2b.- H-EXTENSION WITH ASYMPTOTICALLY OPTIMAL MESH, a - 1.1

p - 1 ( =2.50) p - 2 (0-3.17) p - 3 (0=5.83) p = 4 (0-7.50)
I* H

,elZ D Eel Z D Eel Z D lERZ  D
ERZ ER DR ER

2 58.91 1.19 21.99 .851 15.10 .540 12.66 .275
. 4 31.88 1.29 7.128 1.20 3.162 .905 1.982 .688
* 8 16.55 1.34 2.042 1.23 .4953 1.13 .1812 1.01

16 8.434 1.37 .5387 1.33 .688(-1) 1.26 .134(-1) 1.19
32 4.257 1.41 .1361 1.34 .904(-1) 1.32 .908(-3) 1.29

-. 64 2.138 1.39 .345(-1) 1.36 .115(-2) 1.35 .586(-4) 1.33
128 1.071 1.38 .868(-2) 1.38 .146(-3) 1.38 .376(-5) 1.37
256 .5364 1.38 .217(-2) 1.38 .184(-4) 1.38 .240(-6) 1.38

%I:
o  

•.

'p ,

a
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TABLE 3.3.- PERFORMANCE OF AN OPTIMAL MESH (H = 2, a - 1.1)

p- 1  pp2 pm 3  p= 4

lER leE % lER %Eel%
ERZ ER E e ER

57.42 17.31 8.213 4.762

TABLE 3.4.- MESH PARAMETERS (a = 0.7)

p ot xA (rin)
i 0  x I (opt)

0 1 1

1 7.5 5 5.14(-12) 2.99(-8)
2 12.50 10 1.53(-19) 8.88(-16)
3 17.50 15 4.56(-27) 2.64(-23)
4 22.50 20 1.36(-36) 7.88(-31)
5 27.50 25 4.05(-42) 2.35(-38)

TABLE 3.5.- PENALTY FOR USING OVERREFINED MESH IN TERMS OF INCREASED VALUES
OF C (FIRST ROW) AND N (SECOND ROW)

a

.7 1.1 1.6 2.1
P

1 1.00 1.97 3.40 4.81
1.00 1,97 3.40 4.81

2 1.00 4.69 14.73 29.97
1.00 2.17 3.84 5.47

3 1.00 12.08 69.09 202.90
1.00 2.29 4.10 5.88

4 1.00 32.19 337.15 1430.90
1.00 2.30 4.29 6.15

"IJ
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TABLE 3.6.- P-EXTENSIONS ON UNIFORM MESHES (t - .7)

M I M2 M-3 M 4

leIER% D leUERi D leiER% D leER% D

- 1 87.31 1.00 80.59 1.00 76.11 1.00
S2 76.47 1.01 66.57 1.01 61.39 1.01 57.96 1.01

3 65.14 1.01 56.70 1.01 52.29 1.01 49.37 1.01
4 58.10 1.01 50.58 1.01 46.64 1.01 44.03 1.01
5 53.15 1.01 46.27 1.01 42.67 1.01 40.27 1.01
6 49.42 1.01 43.02 1.01 39.66 1.01 37.45 I101
7 46.48 1.01 40.46 1.01 37.31 1.01 35.21 1.01
8 44.05 1.01 38.36 1.01 35.37 1.01 33.39 1.01
9 42.02 1.01 36.58 1.01 33.74 1.01' 31.85 1.01

10 40.29 1.01 35.09 1.01 32.34 1.01 30.54 1.01
11 38.80 1.01 33.76 1.01 31.15 1.01 29.40 1.01

TABLE 3.7.- PERFORMANCE OF p-EXTENSION BASED ON
OPTIMAL p-DISTRIBUTION AND UNIFORM MESH
(M 2)

P1  P2  EeI ER %

.7 41 1 5.05
1.1 3 1 23.79
1.1 26 2 1.834

3.8.- PERFORMANCE OF h-p EXTENSION (a- 0.7, s = 0.4),
ASYMPTOTICALLY OPTIMAL MESH AND p-DISTRIBUTION

m N leIl D m N lel I D
ER - ER

2 3 54.18 2.62 8 21 7.031 2.82
3 5 38.68 2.66 9 25 4.998 2.77
4 7 28.02 2.61 10 30 3.523 2.82
5 10 19.82 2.70 11 35 2.492 2.80
6 13 14.10 2.69 12 41 1.754 2.89
7 17 9.942 2.82 20 100 .1071 2.94
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TABLE 3.9.- PERFORMANCE OF THE h-p EXTENSION, ASYMPTOTICALLY
OPTIMAL MESH AND UNIFORM p (a- .7)

M N p lel ER% D

2 1 1 74.36 1.50
.1 3 5 2 38.68 1.70

4 7 2 28.02 1.50
5 14 3 16.17 1.57
8 31 4 5.037 1.46
10 49 5 2.262 1.43
15 104 7 .3376 1.25

TABLE 3.10a.- H-EXTENSION UTILIZING FEEDBACK, a = 0.7

p-i p 2

N leI ER%  D N flel ERE D

- 4 58.54 .570 9 43.93 .516
9 31.66 .617 19 22.01 1.03

20 14.48 .592 29 11.09 1.17
39 7.326 .571 39 5.719 1.07

" 85 3.327 .557 81 1.121 .886
101 2.788 .553 101 .3689 .802

TABLE 3.10b.- H-EXTENSION UTILIZING FEEDBACK, a 1.1

Sp- p 2 p 3

N EeIERl D N IeIERZ D N Eel 2 D
ERZ ERER

4 28.21 1.44 9 8.295 2.01 14 4.979 2.78
11 12.06 1.46 21 1.567 1.83 29 .6506 2.91
19 7.255 1.46 41 .4123 1.76 44 .1736 2.62
28 5.011 1.47 51 .2710 1.77 62 .05706 2.36
37 3.837 1.47 79 .1111 1.72 77 .02979 2.34
63 2.266 1.45 99 .07155 1.73 95 .01617 2.37
137 1.052 1.46 125 .04411 1.69 137 .005006 2.17
255 .5673 1.46 251 .01093 1.68 227 .001095 2.15

A
% %
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TABLE 3.11.- H-p EXTENSION UTILIZING
FEEDBACK, a = 0.7

N lel Z DER

4 58.54 2.795
9 31.66 2.88

25 10.47 3.69
39 4.235 3.52
60 1.548 3.64
120 .2933 3.51

TABLE 3.12.- PERFORMANCE OF THE p-EXTENSION WITH M 1,-7a = 0.7 and
0, 0.1, 0.1

0 c = .01 - .1

SP leelRZ D leER % D el ER D

2 76.47 1.01 57.75 .391 36.61 .443
3 65.14 1.01 37.90 .416 15.42 .462
4 58.10 1.01 26.37 .432 6.922 .473
5 53.15 1.01 18.57 .443 3.224 .481
6 49.42 1.01 13.91 .451 1.541 .486
7 46.47 1.01 10.38 .458 .7578 .490
8 44.05 1.01 7.831 .463 .3677 .494
9 42.01 1.01 5.961 .468 .1825 .495
10 40.29 1.01 4.571 .471 .09136 .496
11 38.80 1.01 3.525 .475 .04603 .498
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TABLE 5.1.- H-EXTENSION BASED ON
UNIFORM MESHES (p - 1)

N el ERZ D

51 36.02 .96
167 27.07 .97
591 19.81 .97

TABLE 5.2.- H-EXTENSION WITH
FEEDBACK (p - 1)

N eg ER D

67 32.91 2.03
101 26.38 2.66
143 21.35 2.56
221 16.79 2.50
301 13.61 2.36
617 9.63 2.40

TABLE 5.3.- PERFORMANCE OF THE p-EXTENSION
(UNIFORM MESH, 4 ELEMENTS)

p Ie ERZ D

1 32.61 2.01
2 18.35 1.82
3 15.89 1.99
4 13.24 2.06
5 11.06 2.06
6 9.47 2.07
7 8.27 2.08
8 7.37 2.08

A

.9
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TABLE 5.4.- P-EXTENSION BASED ON PROPERLY
DESIGNED MESH

p leiER %IeIER %

1 31.96

2 12.36

3 6.197

4 3.277

5 2.131

6 1.436

7 1.128

8 .8839

TABLE 6.1.- RELATIVE ERROR IN STRESS COMPONENTS AT POINT (0.25, 0.25)
DIRECT COMPUTATION

N eRiZ eR eR

A 10.99 7.57 11.16
1 4.79 2.32 35.86

221 2 12.21 2.01 .093
3 17.27 17.42 106.43
4 9.71 13.01 71.49

A 4.09 5.47 13.42
1 1.46 2.68 22.96

617 2 4.41 .099 55.69
3 4.41 13.43 3.88
4 6.07 11.74 28.85

TABLE 6.2.- RELATIVE ERROR IN THE STRESS COMPONENTS AT POINT
(0.25, 0.25) INDIRECT COMPUTATION

N eR eR eR11N e% e12 e 2 Z

221 1.69 2.63 1.94

617 .56 .866 .81

,..
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TABLE 6.3a.- RELATIVE ERROR IN STRESSES. A VERTEX OF THE ADJACENT
ELEMENT LIES ON THE CRACK TIP

p-1 e22 e1 2

1 7.903 34.17 18.18
2 6.222 14.09 11.20
3 1.014 10.53 3.254
4 5.249 9.652 4.844
5 2.864 5.411 .1114
6 .6259 3.848 .8387
7 .6893 3.119 .9926
8 1.438 2.233 1.316

TABLE 6.3b.- RELATIVE ERROR IN STRESSES. THE ADJACENT ELEMENT IS
SEPARATED FROM THE CRACK TIP BY ONE LAYER OF ELEMENTS

P R zR eRP e%1 1  e2 2% e1 2Z

1 13.57 33.108 17.39
2 2.124 6.976 .6688
3 1.091 3.843 3.620
4 .9997 1.923 1.852
5 .2653 .7836 .7166
6 .1702 .3928 .3503
7 .0784 .2123 .1529
8 .04005 .1256 .07431

X2

.I t

Ff

V" Figure 2.1. Scheme of the cracked panel.
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